Towards a Theory for Hardware/Software Codesign

Markus Voss Tarek Ben Ismail
Universit4t Karlsruhe, IMA
Karlsruhe, Germany
e-mail: mvoss@ira.uka.de

INPG, TIMA
Grenoble, France
e-mail: ismail@imag.fr

Abstract

This paper aims at a theory for hardware/software
codesign. We approach this goal by investigating system
design according to the allocation principle which is a

systems engineering approach to mixed
hardware/software systems design. The associated
process steps are system-level design including

partitioning and communication synthesis by channel
mapping and binding. A strengthened system-level design
and synthesis process makes codesign with delayed
technology dependent partitioning possible. In addition
we investigate possibilities for automating these
processes by tool support.

Keywords: System-Level Design, Hardware/Software
Codesign, Design Process, Design Theory

1. Introduction

As computer-based systems become more and more
complex the need for methodological support in
managing the development process and life-cycle of these
systems becomes more and more urgent. This need is
approached by both the definition of systems and software
development standards and by a huge amount of methods
and tools developed to aid in either the operational tasks
of systems development or to support managing
development and maintenance processes. It is a symptom
of process maturity if the underlying system theory is
understood and agreed upon by the community, reflected
within the standards, and supported by the methods and
tools. In other words one can conscientiously talk of
engineering if things fit together that way.

It is obvious however, that while the process of building
software systems (to be installed and executed on
standard hardware components) is quite mature in that
sense, the process of developing mixed hardware/software
systems in practice is still dominated by a great degree of

0-8186-6315-4/94 $04.00 © 1994 IEEE

173

Ahmed A. Jerraya

INPG, TIMA
Grenoble, France
e-mail: jerraya@imag.fr

Karl-Heinz Kapp

Universitit Karlsruhe, IMA
Karlsruhe, Germany
e-mail: kapp@ira.uka.de

heuristics. This observation leads us to conclude that
there is a lack of basic system theory for system-level
design and how to systematically proceed towards a
detailed design of mixed hardware/software solutions, in
other words hardware/software codesign.

Within that paper we try to make a contribution towards
defining that kind of theory. We will define a terminology
for system-level design work, outline the basic
engineering steps in hardware/software codesign with
communication synthesis being the point of major
concern, and sketch possibilities for tool support. In
addition we will map the theoretic knowledge into a
generic framework for concrete mixed hardware/software
systems engineering process standard definition.

2. Design Theory
2.1 Services

System design is the activity of mapping a conceptual
model's (model of the system's behaviour abstracting from
implementation details used as a media for requirements
analysis) information into a physical structure of
cooperating components in order to define an architecture
that satisfies the users needs in terms of both functional
and non functional requirements. The system is
assembled together from physical components of defined
functionality. This work covers both the system's
architectural definition as well as the detailed, internal

Design
w [{arde)

System Model
with Functions and
Information or Objects

(2)

Physical System
with cooperating
Components

Figure 1: System Design

design of the components constituting this architecture.
Figure 1 illustrates this general meaning of design.

Highly valuable for systemizing design work is the term
service. A service is a physical component of a system,
that can be ordered from outside, this is from other
system components, to carry out some sort of
functionality to assure the performance of some part of
the system's overall functionality. A component of that
kind consists of hardware and/or software parts. Software
parts of a service are linked data structures and
algorithms (modules) which assure wanted functionality
from the software engineering point of view. Hardware
parts of a service are both components directly assuring
the needed functionality or components the software parts
can be installed and executed upon.

Especially in automation where temporal and
performance requirements tend to be very important the
system designer should be given the highest degree of
freedom to decide upon which technological solution is
the most suitable for his problem. Services may be
dedicated hardware components (ASICS,
microcode/datapath), intelligent subsystems of mixed
hardware, software and control parts or software for
standard components and operating systems.

Once specified in terms of its functionality a service may
manifest itself in a variety of products of different
designs, each with its own specific non functional quality
measures. Design itself then has the character of choice
between different alternatives which is a prerequisite to
satisfy design's inherent nature of being a matter of trade-
off decisions. The service is the entity of managemental
consideration within the design process both in terms of
having non functional quality measures and re-use
properties assigned. For more details on the nature of
service-oriented design we refer to [1] or [2].

u2|.

System Model C1

Jpus

s | S—

2.2 Allocation

The design mapping from above can be partitioned into
several steps or distinct tasks. The first way of
partitioning design work is in terms of a design's /ocation
dependent and location independent characteristics. This
is done by separating issues concerned with 'logical’ unit
building like process structure definition or decisions in
terms of parallelism from issues concerned with physical
structure building like choosing sorts of physical
components and interconnection media. These 'logical'
units will from now on be referred to as Design Units
(DU). They constitute a location independent system
design.

Building a location independent system design is very
often called system-level design. All sorts of languages
are proposed for performing that task (SDL, StateCharts,
Lotus, Estelle, OCCAM, CSP-like languages etc.). These
have in common that one models the system as a
(possibly hierarchically ordered) set of parallel and
interacting extended finite state machines (EFSM). The
means of communication may be abstracted as happening
via channels and the models communication protocol
assumptions is where the approaches differ the most.
That observation calls for a sort of intermediate form for
system-level design description general enough to model
all forms of interaction from the established notations.
We return to that issue when talking about
communication.

One may regard executing both tasks mentioned above as
building two distinct sorts of system structures. Resulting
from separating these issues is a third step of integrating
these two structures again for the system structure of
cooperating services by mapping design units onto
physical components. Physical components therefore can
be regarded as places whereon to allocate defined

Location Independent Structure
with cooperating Design Units

S1le + sS4

System Structure
with cooperating Services

Allocation

Physical Structure with

| -
i Cc2 C3
i interconnected Components

[Communication Media]

Figure 2: System Design by Allocation

Interpretation

C1J E:;J | 77 A

(Communication Media |

Physical Structure with
interconnected Components

SW Bus

T 1
c2 SW Lﬂsw

C1
HW

HW/SW Bus

Physical Structure
instantiated from the
Generic Architecture Framework

Figure 3: Interpretation of the Physical Structure

functionality in terms of design units. We call this
process system design according to the allocation
principle. 1t is illustrated in figure 2.

In software engineering this separation corresponds to a
separation between hardware and software issues. Design
units correspond to software modules and physical
components correspond to the hardware the software can
be installed and executed upon.

In mixed hardware/software systems engineering the
physical components may be both components directly
assuring the needed functionality or components which
are hosts for software. On a sufficient level of detail these
are either one or the other. If this level of detail is
matched, the physical structure of interconnected
components not only covers what may be called the
architecture interconnection structure, as e.g. described in
architecture interconnect diagrams from RT/SD [4],
which is a system-level information, but also
hardware/software partitioning decisions.

These decisions consequently also apply for the location
independent structure of design units. On a sufficient
level of detail (in terms of the hierarchy of design units
stated above) this structure not only covers what may be
called the architecture flow structure (described in
architecture flow diagrams from RT/SD), which also is a
system-level information, but the same hardware/software
partitioning decisions addressed above.

3

S4

Abstraction
/‘_‘\
[s1] [s2 n
S1 52 ?‘ ,S . ,53» S
System Structure

Note, that going from system-level issues down to
S3
Service Aécéss
with cooperating Services

Abstract System Structure
with cooperating Services

Figure 4: Abstraction from Hardware and Communication

176

hardware/software design issues following these ideas is
only a matter of abstraction or leve! of detail. The
conclusion is, that using the introduced abstractions, one
can seamlessly proceed from the system-level view to the
hardware/software view.

2.3 Generic Architecture Framework

We first concentrate on the physical structure of
interconnected components and investigate what
characteristics there are that one can utilize when
working towards system synthesis.

Having the either/or classification of physical components
from above yields a taxonomy for physical components
and interconnection media which can be captured in a
Generic Architecture Framework (pre-defined general
architecture). Components are of fype hardware or
software (software hosts). Interconnection media are of
type hardware to hardware (HW bus), software to
software (SW bus), or hardware to software (HW/SW
bus). Figure 3 illustrates the interpretation of the physical
structure of interconnected components as an
instantiation of the generic architecture framework. After
looking at communication, this definition will have to be
extended slightly.

There may be many implementations of these generic
entities. Software type components are Microprocessors
with memory or other programmable components.
Hardware type components are ASICs, PLDs, FPGAs, or
other existing circuits. Interconnection media are wires or
buses of different specification connecting sub-systems.
Their mapping into the taxonomy allows for an
organization in terms of re-use.

2.4 Service Access

When working on the software side one can easily
abstract from the underlying hardware and
communication implementation details. Service modules
may be regarded as only having access to other services

Service Access Partitioning

—

St S2 S3 S4 S1 S2 S3 S4
Service Access c1 C2 .

Abstract System Structure
with Services cooperating
via Service Access

Abstract System Structure
with Services cooperating
via Components

Figure 5: Service Access Partitioning

via a transparent service access using functionality
provided by a service access interface. That service access
is the media for all communication among services and
realizes conceptual communication protocols to be used
by the service modules. This abstraction principle is
illustrated in figure 4.

The service access can be regarded as a kind of 'logical
system bus' into which services can be 'plugged in' for
system integration or configuration purposes. That
abstraction effectively separates the design issues as
described above and allows for a most natural
understanding of the integration or configuration aspects.
An implementation of the service access as a basis for
software system development can be realized by an
extended operating system to be present on all physical
components and being accessible (in whatever syntactic
form) from within the programming language [5].

In mixed hardware/software design we naturally have to
care about the communication details. Communication
synthesis is an integral part of mixed hardware/software
systems design. Due to service-orientation however, one
can utilize the same abstraction from above concerned
with software system design to form a sound theoretical
basis for communication synthesis. Services cooperate by
accessing the service access which serves as some sort of
co-processor responsible for inter-service communication
execution. It realizes the channels the design units use for
communication as well as the actual physical links.

Each accessed by one or more DUs

’ y

cu Access Access
Procedure Procedure
£ perform perform:
l Incorporated Conceptual Protocol (Controller) |
:read/write
{ Incorporated Conceptual Buffers (Ports) l

Figure 6: Channel Unit Structure

176

Because of the inherent heterogenity of mixed
hardware/software systems however, we regard the
service access as decomposable into components
according to sets of the single channels of communication
between design units. That fact is illustrated in figure 5.
Each component hides a special sort of communication
implementation. The classification may be in terms of
protocol specification as well as communication media.
With the example from above, C2 may e.g. be the
mentioned extended operating system plus underlying
communication media. The sets of channels
corresponding to the components of the service access are
called Channel Units (CU).

Channel units may be regarded as consisting of

e access procedures, to be accessed by the DUs

o buffers or ports according to the encapsulated
conceptual channels, and

e a controller to perform the access on the buffers
according to the protocols.

This is illustrated in figure 6. The process of organizing
the communication within the location independent
design according to channel units is called channel unit
transformation. 1t is illustrated in figure 7.

Note, that channel unit transformation is one way of
mapping design descriptions given in one of the
established forms mentioned above into an intermediate
form, because it allows for more than one form of
communication protocol to exist within the same
framework. In addition, channel unit transformation is
the first step in communication synthesis, namely going
from communication specification to communication
design.

Before we go into more detail on the channel units
internal structure, a classification scheme for the
communication protocols, and the process steps in
communication synthesis, we will first have a closer look
at the location independent structure of cooperating
design units regarding system synthesis.

Channel Unit Transformation

R [

_jpu1

DU2 ‘ put
503 bu2
. ~CU2le.
DU4 DU4k

Figure 7. Channel Unit Transformation

SW Bus

T 1

Physical Structure

1 Cc2 Cc3 instantiated from the
HW sw Generic Architecture
Framework
HW/SW Bus B\
\gorrespondance
.
_ pDu1m’
pur| o HW
- Partitioning
DU2| :
~bus \ bu2'|
‘s
DU4 DU'3'
SW

Location Independant Location Independant
Structure with cooperating Structure with cooperating
Design Units independent Design Units corresponding

of Physical Structure to Physical Structure

Figure 8: System-Level Partitioning

2.5 Partitioning

Channel units also provide the mechanism for
transforming a system-level description completely
independent from physical structure information into a
system-level description which is more synthesis oriented.
In the later case the structure given by design units and
channel units is build according to the proposed physical
structure of interconnected components. Design units are
built matching the physical components and channel
units matching the interconnection media.

This aspect of transformation yields a partitioning of the
engineering step of location independent structure
building into two sorts of activities. One is building that
structure regardless of the proposed physical structure
and the other is transforming it to better suit synthesis
requirements. In [6] the later process is called system-
level partitioning. It is illustrated in figure 8. As a result
the transformed structure matches the level of detail
mentioned above where hardware/software partitioning
issues are incorporated into the location independent
structure of cooperating design units.

Starting from a given system-level design the
transformation is done by reordering the hierarchy,
merging concurrent processes together to form one
process for a better resource utilization, splitting up one
process to form concurrent processes for distribution
purposes, etc. For more details on transformation

177

operations and the impacts on the structure of parallel
processes we refer to [7].

2.6 Communication Synthesis

By now we have investigated how the two structures build
in system design according to the allocation principle are
to be detailed or transformed according to system
synthesis requirements. What we still lack is a systematic
procedure for mapping these onto one another. The major
question naturally is what the channel units map to or in
other words how communication details are managed and
kept consistent going from specification to
implementation. This is what we will analyze now.

2,6.1 Protocol Specifications

First one must have a classification of conceptual
communication protocols as incorporated within the
models underlying the different system-level design
descriptions. A communication between two design units
or processes is primarily characterized by whether
reading and writing information is destructive or non
destructive (or potentially blocking or non blocking
respectively). An orthogonal classification can be made in
terms of assumed conceptual buffer size and directionality
(unidirectional or bi-directional) with respect to that
conceptual buffer.

As an example, the mechanism underlying SDL
specifications is non destructive writing, destructive
reading, unlimited buffer, and unidirectional flow. The
Rendezvous mechanism underlying OCCAM or CSP-like
languages is non destructive writing, destructive reading,
buffer size one, and unidirectional flow and the one
underlying the remote procedure call (RPC) is like the
former only with bi-directional flow.

That classification scheme covers all relevant aspects of
the protocols and has to be maintained over design and
implementation. It is the key to channel unit mapping
consistency and channel implementation re-use.

2.6.2 Channel Binding

Having these classifications the first step in
communication synthesis is what is called channel
binding in [6]. Channel binding is the engineering
process view on what was called channel unit
transformation. It means picking an appropriate channel
unit (from a library of channel units) and replacing
communication operations due to conceptual protocol
specification by accessing the channel unit. This step may

erotocol Channel Binding

rotoco

Type m Access Access

DU1|. ...|._.[DU2 DU1 | Jeui | .pu2
| (part)| |

Communication
Design using
Access to Design Units

Communication
Specification using
conceptual Protocols

Figure 9: Channel Binding

be regarded as going from specification to design and is
illustrated in figure 9.

It is important to notice, that the access itself is also
performed according to some protocol. In SOLAR a RPC
protocol is proposed. Its characteristics are described
above. Regarding the protocol as conceptual in the sense
defined above gives the channel units the character of
additional design units responsible for executing
communication between some of the ‘primary’ design
units. Being EFSMs, they hide the communication buffers
within their local variables and the control mechanisms
within their process specification.

This abstraction corresponds well with the view taken in
service access partitioning. The system structure of
cooperating services consists of services corresponding to
the 'primary' design units and of the components of the
service access, which therefore have service character
themselves. One may talk of application and
communication services.

2.6.3 Channel Mapping

The second step in communication synthesis is called
channel! mapping in [6]. It may be regarded as going from
communication design to implementation. Channel
mapping is about distributing the channel units
functionality (by distributing access procedures, controller
functionality and buffers) across units matching physical

/

Communication c2'
Controller

: Bus t

Cc1 Cc2 Cc3
t Bus

Physical Structure
t instantiated from the

c1 Communication extended Generic
Controller

Architecture Framework
Figure 10: Generic Architecture Framework
Extension

components and possible additional dedicated physical
components called communication controllers which are
e.g. needed when implementing HW/SW connection.
Note, that communication controllers are an extension to
be incorporated into the generic architecture framework.
An instantiation may look as illustrated in figure 10.

Given this extension one can now map the channel units
functionality into different implementations either using
dedicated communication controllers or distributing
control and buffers among the design units only. Figure
11 illustrates that fact. It also indicates the access
protocols flow of control (indicated by the dashed arrows)
and data (indicated by the boldface arrows).

As examples for the alternative illustrated using the
controller, one may e.g. have an implementation of an
asynchronous protocol using dual-ported RAM within the
controller unit. The second alternative illustrated may e.g.
be a simple synchronous handshake protocol upon the
bus.

2.7 Result
The output from executing the steps from above is a

sytem design complete enough to be directly transformed
into either hardware description languages like VHDL

C1 Access c2

t Bus t

Access

Access| ¢ 1 Access
3 Controller c1 Communication
DU 1T [Controlier LIy)2 Channel Mapping Buffer Controller

Buffer |- (Alfernatives) Communication
c L Implementations
omr'numca:tlon Access with distributed

Design using Access| C1 | Controfler| co Design Unit

Access to Design Units Controller Buffer, Functionality

(with Access Protocol indicated)

: Bus t

Figure 11: Channel Mapping

and/or programming languages like C for components
that are not to be re-used. This transformation is regarded
as out of the scope of what we consider system design and
what we deal with in that paper. The principles are well
understood and supported by a variety of tools.

2.8 Recursive Process and Abstraction

The assumption of one-to-one correspondence between
design units and channel units to physical components
connected via real busses was needed above to motivate
both terminology and process for system design. On the
other hand it is the lowest level of abstraction possible.

It is possible however to systematically proceed to a
higher level abstraction by letting design units and
channel units correspond to more complex subsystems
(we already indicated that by assigning hierarchy to
design units), which can infernally be developed
according to the same process sketched above. The
process of actual system design is of recursive nature in
terms of the level of abstraction. The classification of
whether these more complex units are regarded hardware
or software within the higher level abstraction only
depends on the classification of their access.

That abstraction principle is the theoretical foundation for
general service re-use, where services may be of complex
internal structure. Going into more detail on these
principles would exceed the frame of this paper.

3. Design Process Model

As indicated in the introduction, we will give a brief
summery of the engineering steps discussed above and

Location Independent Structure

relate them to one another in terms of dependencies both
functional and temporal. This results in a draft version of
a design process model being a framework for concrete
mixed hardware/software systems engineering process
standard definition.

Figure 12 illustrates the process by a so called DFD-
Projection from the processes behavioural model. The
boxes are to be interpreted as activities within that
process, the circles as products, and the arrows denote the
flow of information (functional dependencies). The
generic architecture framework, library of channel units
and library of channel implementations are regarded as
constants of the process within this process model. This is
not true in reality though. The concrete process has to be
extended in terms of configuration management activities
controlling the configuration and keeping the libraries
consistent supporting re-use.

The activities mentioned (both operational and
managerial) are in the next step to be supported by tools.

4. An Example for Tool Support

Several tools exist for supporting hardware/software
codesign. Most of these tools can be modeled using the
above mentioned theory. The main differences between
them are the design steps performed, the algorithms
implemented, and the models used to support the
different steps.

As an example, the presence of the general process is
briefly investigated for the hardware/software codesign
environment COSMOS. COSMOS starts from the
system-level specification language SDL, and produces a

Library of Communication-Level

of Cooperating Design Units Channel Units Design Model
(System-Level Design Model)\\ \
System-Level System-Level \(\ Channel
Design | Partitioning /) Binding |
. Channel
Interpretatior} . - lﬁ Mapping
Conceptual Generic Physical Structure Library of Hardware/Software
Model Architecture of Interconnected Channel Architecture-Level
(Requirements) Framework Components Implementations Design Model

Figure 12: Process Model for System Design

heterogeneous architecture including hardware
descriptions in VHDL and software descriptions in C.

Although the design starts from an SDL description, all
the steps make use of SOLAR (3], a design representation
language for system-level concepts. SOLAR can model
system-level constructs in a synthesis-oriented manner.
The basic concept of SOLAR is an EFSM that allows the
representation of hierarchy and parallelism.

In SOLAR, a system is structured in terms of
communicating design units. A design unit can either
contain a set of other design units and communication
operators known as channel units, or a set of transition
tables modeled by the state table (ST) operator. This
operator is used to model process-level hierarchy. State
tables can be executed in parallel or serially. They can
contain other state tables, simple leaf states, state
transitions and global actions (exceptions). An automatic
translation tool of SDL descriptions into SOLAR has
been implemented. Each SDL process is translated into a
design unit composed of an EFSM and a channel unit.
This translation assumes that the transmission do not
introduce delays.

Communication between design units is performed using
channel unit. It is possible to model most system-level
communication properties such as message passing,
shared resources and other more complex and layered
protocols.

Starting from a SOLAR representation, a system is
partitioned by a system-level partitioning tool box called
PARTIF [7]. This tool box allows an interactive
partitioning by means of four system-level transformation
primitives. The two first primitives MOVE and MERGE
allow the reordering of processes hierarchy and merging
processes together to form a single process. The two
second primitives SPLIT and CUT allow splitting up one
design unit to form inter-dependent design units for
distribution purposes.

The channel binding step selects a component from a
library of channel units [8). At this level, a channel unit
is described using SOLAR. The channel unit is selected
in order to provide the services required by the design
units. The channel mapping step selects a component
from a library of channel implementations. Each channel
implementation is described in C code or in VHDL. A
channel implementation is selected with regard to data
transfer rates, memory buffering capacity, and number of
control and data lines.

This activity results in a heterogeneous description
composed of a set of communication components and
interconnected processes represented by VHDL for the

180

hardware components and C for the software modules. At
this level, an implementation of channels is needed. This
implementation may be the result of an early synthesis
step using COSMOS or another design method.

S. Conclusion

Within this paper we outlined a terminology and general
process for the design of mixed hardware/software
systems. It is obvious, that the 'systems approach' taken
yields a conceptual basis for hardware/software codesign.

The fields of recursive process and higher-level
abstraction as well as re-use through all the phases of
mixed hardware/software design could not be elaborated
on in detail. The introduced theory however is a sound
backbone for future work towards progress concerning
these issues.

References

m Voss, M., Schweizer, G.: A Development Methodology
for Systems Engineering of Computer-Based Systems
and its Environmental Support. Presented at: Computer
Aided Systems Technology (CAST) '94 Workshop,
Ottawa, Canada, 1994

Schweizer, G., Voss, M.: Managing the ECBS Process -
Towards a System Theory for ECBS. Proceedings of 6th
Workshop on Engineering of Computer-Based Systems,
Stockholm, Sweden, Computer Society Press, 1994
Jerraya, A A., OBrien, K.: SOLAR: An Intermediate
Format for System-Level Modeling and Synthesis. In:
Computer Aided Software/Hardware Engineering,
Rozenblit, J., Buchenrieder, K. (Eds.), [EEE Press,
1994

(2]

(3]

4] Hatley, D.J., Pirbhai, 1. A.: Strategies for Real-Time
System Specification. Dorset House, 1988

[5] Voss, M.: Service-Oriented Design and its Support by a
Service Access System. Internal Paper of the IMA,
University of Karlsruhe, 1993

(6] Benlsmail, T., et al: An Approach for Hardware-

Software Codesign. To appear in: Rapid System
Prototyping (RSP)'94 Workshop, Grenoble, France, June
1994

Benlsmail, T., OBrien, K., Jerraya, A.A.: Interactive
System-Level Partitioning with PARTIF. Proc.
EDAC'94, Paris, France, Feb. 1994

OBrien, K., Benlsmail, T., Jerraya, A.A.: A Flexible
Communication Modelling Paradigm For System-Level
Synthesis. Handouts of Int'l Wshp on Hardware-
Software Co-Design, Cambridge, Massachusetts, Oct.
1993

71

(81

